WELCOME

RIDING THE WAVES OF Excellence in SCI Care

San Diego

Spinal Cord Disorders in Children and Adolescents

Sue Mukherjee MD FRCPC Shriners Children's Chicago Thanks to Larry Vogel MD

Sue Mukherjee, MD discloses no conflicts of interest

Spinal Cord Injury Professionals, Inc.

LEARNING OBJECTIVES

At the conclusion of this presentation, the learner will:

- 1. Identify 2 unique etiologies for SCI in children.
- 2. Identify 2 unique musculoskeletal complications of SCI in children.
- 3. Discuss Management of hypercalcemia in an adolescent with a SCI
- 4. Identify different clinical presentation of Chiari I &II

QRCOD E

Unique Features of Spinal Cord Injuries in Children and Adolescents

- Uniqueness of pediatric SCI is based upon:
 - the dynamic nature of growth and development in children and adolescents
 - the mutual **interactions of growth & development** with the manifestations & complications

ORCOL

Е

Manifestations of SCI that are a consequence of young age

- SCIWORA = spinal cord injury without radiograph abnormalities
- Delayed onset of neurologic deficits
- SCI consequent to child abuse

QRCOD E

Complications of SCI related to young age at time of injury

- Hypercalcemia
- Scoliosis
- Hip subluxation and contractures

Gender

	Male	Female
0-5 years	51%	49%
6-12 years	58%	42%
13-15 years	70%	30%
16-21 years	83%	17%
22+	80%	20%

Etiology

	0-5 yrs	6-12	13-15	16-21	22+
		yrs	yrs	yrs	yrs
MVI	60%	57%	41%	52%	41.5%
Violence	5%	3.7%	12.2%	20.4%	9.4%
Sports	0%	9.4%	25.9%	17.3%	8.5%
Falls	7.5%	7.5%	7.6%	6.8%	31.2%
Med/surg	16.3%	18.7%	8.1%	0.8%	4.6%
Other	11.2%	3.7%	5.1%	2.9%	4.8%

Academy of Spinal Cord Injury Professionals, Inc.³⁴ Many Minds. One Vision.

Etiologies unique to pediatric SCI

- Lap-belt
- Birth injury
- High cervical lesions
 - Downs
 - Skeletal dysplasias
 - JRA

- SCI
- Intra-abdominal injury
- "Seat-belt sign"
 - Abdominal wall bruising

- Intra-abdominal injury
 - Hollow viscus injuries in 33-40% of patients
 - Tears or perforations of small or large bowel
 - Less commonly seen are injuries to liver, spleen, pancreas, bladder and uterus

- SCIWORA in 24-30%
- Level of vertebral injury = L2-L4
- Neurologic level varies
 - T6-T10 ?related to vascular injury
 - Conus injury
 - Cauda equina injury

QRCOD

Ε

- Pathophysiology
 - Flexion/distraction forces with fixed anterior fulcrum = lap-belt above pelvic brim

• Prevention

- Children < 40 lbs Child restraints 40-80 lbs - Booster seats
- Children <2yo rear facing carseat

QRCOD E

Neonatal Spinal Cord Injury

- Incidence = 1/60,000 births
- Upper cervical injury most common
 - caused by torsion
- Lower cervical-thoracic injuries more commonly associated with breech deliveries
 - caused by traction

Neonatal Spinal Cord Injury

Associated injuries

- Brachial plexus injury
- Phrenic nerve damage
- Hypoxic-ischemic encephalopathy

Acute flaccid paralysis

Acute flaccid myelitis

QRCOD

Ε

- Guillain Barre
- Toxic neuropathy

Acute flaccid myelitis

- Sudden weakness in one or more arms or legs
- Decreased muscle tone or absent reflexes
- Occasional involvement of cranial nerves
 - Facial weakness
 - Swallowing difficulties
 - Drooping of eyes

Q	RC	0	D
	E		

Acute flaccid myelitis

Confirmed case

- Acute onset of focal limb weakness AND
- MRI
 - Largely restricted to gray matter
 - Spanning one or more spinal segments

Probable case

- Acute onset of focal limb weakness AND
- CSF with pleocytosis

Acute flaccid myelitis

Etiologies

- Enterovirus D68, D71
- West Nile virus
- Herpes

Acute flaccid myelitis- AFM

Clinical presentation

- Acute onset of asymmetric limb weakness
 Median age=7.6 years (5months 20 years)
 Prognosis
- 2/3 some improvement
- 1/3 no improvement
- No one fully recovered
- Typically bowel/bladder and sensation are unaffected

Neurological Impairment versus Age at Injury

Para T	etra	Complete
55%	45%	80.7%
62.5%	36.5%	68.4%
47.6%	51.9%	55.6%
46.8%	52.9%	56.8%
39%	60.3%	39.1%
	55% 62.5% 47.6% 46.8%	55% 45% 62.5% 36.5% 47.6% 51.9% 46.8% 52.9%

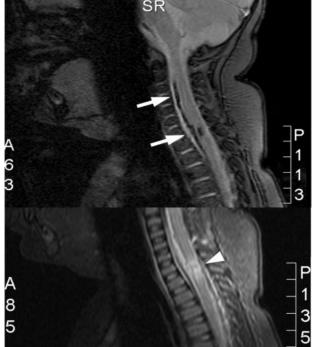
Academy of

Spinal Cord Injury Professionals,Inc. Many Minds. One Vision.

SCIWORA = Spinal Cord Injury WithOut Radiographic Abnormality

SCI without evidence of fracture or dislocation on:

- Routine spine radiographs
- Tomography
- CT
- Myelography
- Dynamic flexion/extension studies



MRI abnormalities noted in 65% of patients with SCIWORA

- Neural abnormalities
 - Complete cord disruption
 - Cord hemorrhage
 - Cord edema
- Extra-neural abnormalities
 - Rupture of anterior or posterior longitudinal ligaments
- Prognosis for neurologic recovery related to severity of MRI changes

Orthobullets.com

SCIWORA

0-5 years	64.2%
6-12 years	32.5%
13-15 years	22.3%
16-21 years	19.5%

Ligamentous disruption/stretch

Delayed onset of neurologic findings

- 30 minutes to 4 days
- Approximately 25% of children with SCIs
- Many of the children may have transient neurologic symptoms such as subjective weakness or paresthesias

Bladder Management

Goals of bladder program

- Prevent urinary tract infections
- Preserve renal function
- Urinary continence
- Independence
- Socially acceptable

QRCOD

E

Intermittent Catheterization Program

- ICP initiated at approximately 3 years of age (when normally potty-trained)
 - ICP initiated earlier if child experiences:
 - Recurrent UTI
 - Reflux/obstructive uropathy
 - Compromised renal function
 - Self catheterization is taught when child is ready, approximately 5 to 7 years of age

Bowel Management

Goals

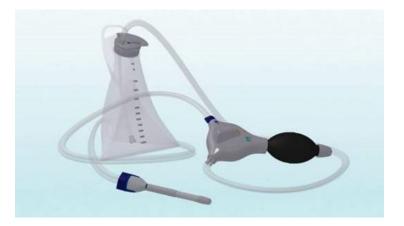
- Complete and regular bowel movements
- Short duration of bowel program
- Aesthetics
- Independence
- Continence
- Prevention of constipation or diarrhea

Bowel Management

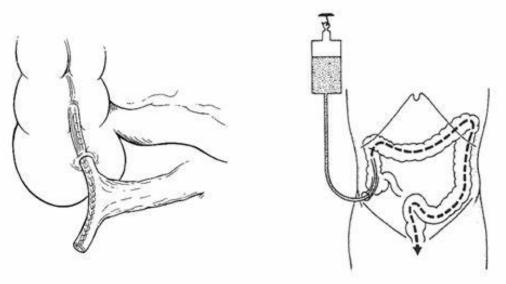
- Bowel programs initiated at approximately 2-4 years of age
- Bowel program independently conducted by 5 to7 years of age

Components of bowel program

- Regularity frequency and time of day
- Privacy
- Conduct on toilet or commode
- Increase intraabdominal pressure
- Use of rapidly acting suppositories
- Manual extraction &/or digital stimulation
 - Interferes with independence
- Laxatives &/or stool softeners



QRCOD


Bowel Management Options

- Antegrade continence enemas
- Transanal irrigation
- Pulsed irrigation enemas
- FES at sphincter

QRCOD

Ε

Latex Allergy

- Type I allergic reactions
 - SCI
 - Myelomeningocele
 - Congenital GU anomalies
 - Health Care Workers

Latex Allergy Diagnosis

- History
 - Including unexplained allergic reactions
- Skin testing
- RIA/RAST (blood test for antibody)
- ALLERGY=Positive Hx or Positive Lab

Latex Allergy Prevention

All patients

- Education
- Avoidance of all latex containing devices/materials

Latex Allergy Allergic Patients

- Medical alert IDs
- Autoinjectable epinephrine

QRCOD E

Hypercalcemia

- Incidence=10-23%
- Most common in adolescent and young adult males with SCI
- Onset=1-12 weeks after SCI
- Less common since time to being upright and starting therapy is much quicker post injury than historical

Hypercalcemia Diagnosis

Clinical

- Abdominal pain, nausea and vomiting
- Malaise, lethargy
- Anorexia
- Polydipsia, polyuria, and dehydration
- Calcium >10.2

QRCOD E

Hypercalcemia Treatment

- Hydration with normal saline
- Pamidronate iv
- Vitamin D

Hypercalcemia Complications

- Nephrocalcinosis
- Urolithiasis
- Renal failure

Pulmonary Complications

- Atelectasis
- Pneumonia
- ARDS
- Aspiration
- Bronchitis/tracheitis
- Bronchospasm
- Respiratory failure

QRCOD E

Respiratory failure

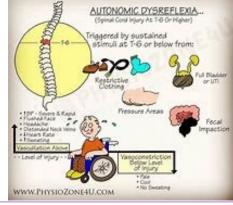
- Acute
- Chronic, particularly infants with high cervical lesions *increase Tidal Volume with growth
 - Excessive sleepiness during day
 - Investigations
 - Sleep studies
 - ABG

DVT

	Acute Rehab	
0-5 years	0	0
6-12 years	1.3%	0.6%
13-15 years	5.7%	2.2%
16-21 years	6.1%	3.0%

DVT Prevention

Anticoagulation


- Heparin SQ
- Warfarin
- Low molecular weight heparin
 - Monitor with anti-factor Xa levels

Autonomic Dysreflexia

- Pathophysiology, manifestations, treatment, and complications similar to adult SCI except
- Blood pressure is lower in children and adolescents and increases with age - need to compare BP with child's baseline values
- Young children may not accurately articulate symptoms such as headache

QRCOD

Ε

Prevalence of scoliosis

Dependent upon age at injury

Age at SCI Prior to puberty

Prevalence of Scoliosis

Need for

surgery

98%

67%

20%

5%

After puberty

QRCOD

Ε

Orthosis

- Prophylactic to prevent development of deformity
- Advantage may be effective in delaying surgery
- Disadvantage = may interfere with independence, ADLs and mobility, and may cause skin problems
- For curves <20-40 : arrest/slow curve progression</p>
- Sitting balance

Indications for Scoliosis Surgery

- Curves > 40 in a growing child
- Age > 10 years
- Rapidly progressive curve
- Functional problems or pain in a mature patient

QRCOD

Ε

Hip Subluxation/Dislocation

Incidence = 30-40%

Most common in children who are younger when injured

Age when injured Incidence of hip instability

62%

10%

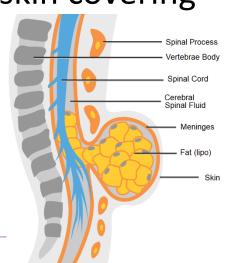
 \leq 8 years

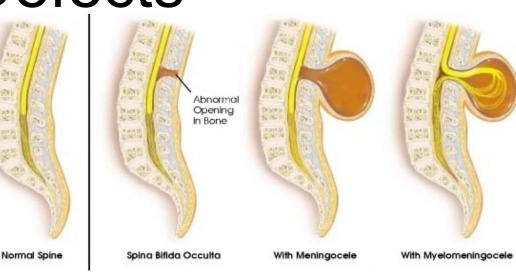
 ≥ 9 years

QRCOD E

Neural Tube Defects

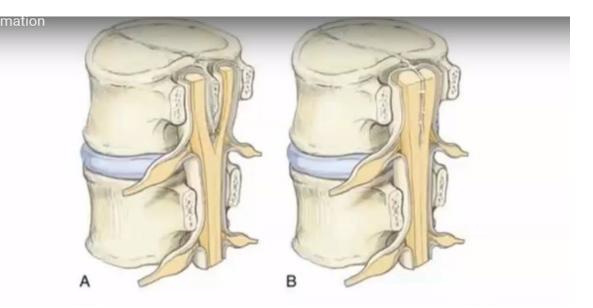
- Spina bifida and anencephaly
 - two most common forms of neural-tube defects
 - referred to as spinal dysraphism
- Spina bifida classified on whether neural tissue is exposed
- Fetal surgery or fetoscopic surgery is available

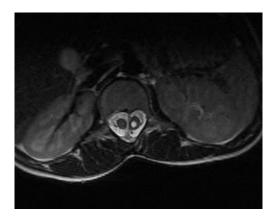




Neural Tube Defects

- Myelomeningoceles
 - Open lesions that have either
 - absent skin covering
 - covered only by a thin membrane
- Spina bifida lesions with intact skin covering
 - occult spinal dysraphism
 - lipomeningocele


QRCOD


Ε

Neural Tube Defects

 \rightarrow

- Occult spinal dysraphism
 - lipomeningocele
 - Diastematomyelia
 - dermal sinus
 - meningocele
 - tight filum terminale
 - myelocystocele

QRCOD E

Myelomeningocele Incidence

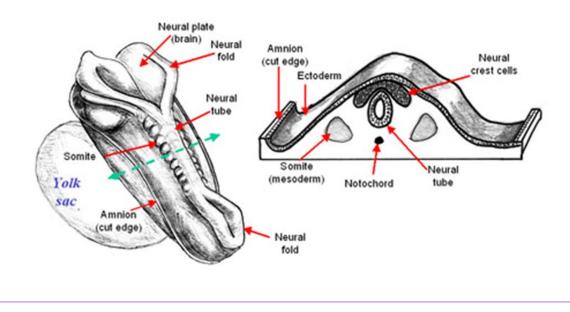
- •3.0/10,000 (1999-2000)
 - 3.8/10,000 Hispanic
 - 2.73/10,000 Non-Hispanic black or African American
 - 3.09/10,000 Non-Hispanic white

Myelomeningocele Etiology

- Both genetic and environmental factors
 - Maternal diabetes mellitus
 - Maternal use of valproic acid and carbamazepine
 - Maternal obesity, fever, and hyperthermia
 - Nutritional/dietary
 - All causes point to a role of FOLIC ACID availability at time of NT closure (21-28d embryo age)

Myelomeningocele

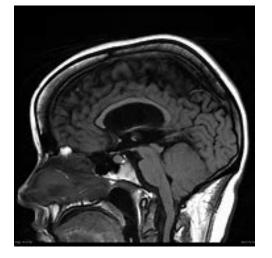
- Recurrence risk
- 2-5% if one affected sib
- 6-10% if two affected sibs
- Recommend 10x folic acid dose prior to conception = 4mg



Myelomeningocele Pathophysiology

 Neural-tube defects are caused by failure of the neural tube to close between the third and fourth week of gestation

QRCOD


E

Myelomeningocele Pathophysiology

- Brain
 - Hydrocephalus 70 to 90%
 - Chiari II Malformation
 - Small posterior fossa

Caudal displacement of cerebellar vermis
 & brain stem into cervical canal

Myelomeningocele Pathophysiology

- Spine and spinal cord defect can occur from the thoracic to the sacral levels
- Lumbosacral region most common
 - 66 to 75 %

Clinical Manifestations

- Approximately 30% of individuals with myelomeningocele have below normal intelligence
 - primarily perceptual motor abnormalities
 - normal verbal skills
- Hearing and visual impairments
- Seizures

Unique Clinical Manifestations

- Subtle CNS deficits
- Disorders of visual-spatial organization defects in coordination and dexterity of hand function
- Cocktail chatter excessive talking and superficiality of content
- LD and ADD

Prenatal Diagnosis

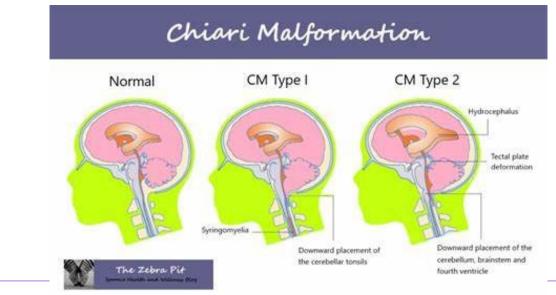
- Alpha-fetoprotein
- Ultrasound –second-trimester anomaly scanning
- Amniocentesis

QRCOD

Ε

Developmental Syringomyelia

Chiari I malformation


Academy of

Spinal Cord Iniury

Many Minds. One Vision

Onals.Inc.

- Caudal displacement of cerebellar tonsils below the foramen magnum
- Most commonly involves cervical or cervico-thoracic cord

Developmental Sryingomyelia

- Orthopaedic abnormalities
 - Scoliosis
 - Left thoracic curve
 - Progressive curve on males
 - Abnormal neurological examination
 - Pes cavus
 - Charcot joints

Sue Mukherjee MD Shriners Children's Chicago cell 773-595-5070

