WELCOME

September 3-6, 2023

RIDING THE WAVES OF Excellence in SCI Care

Housekeeping information can go here

Accreditation information can go here

Respiratory Management in SCI

Christopher Boudakian, DO

Medical Director Director of Spinal Cord Injury Program California Rehabilitation Institute

None

LEARNING OBJECTIVES

At the conclusion of this presentation, the learner will:

- Understand Restrictive pulmonary disease/respiratory impairment in the setting of spinal cord injury
- Understand the role of Invasive and noninvasive ventilation/MIE
- Identify respiratory complications including Infection/aspiration/atelectasis

Introduction

- Respiratory complications are the leading cause of death in persons with spinal cord injury
- About 30% of all deaths after an SCI are due to respiratory causes, with pneumonia as the most common respiratory cause
- 2/3 of acute C1-T12 patients develop respiratory problems
- Little evidence based literature, current practice principles are based largely on expert panel opinion and clinical expertise.
- 3 key pulmonary problems in individuals with SCI
 - Secretion management
 - Atelectasis
 - Hypoventilation

Muscles of Respiration

San Diego

LUNG'S VOLUMES AND CAPACITIES

Academy of Spinal Cord Injury Professionals, Inc."

Acute Injury

- Respiratory failure may develop within the first week of SCI
- Risk associated with level and completeness of injury
- Risk factors include:
 - Age >45 years
 - Pneumonia
 - Copious secretions
 - Associated trauma
 - Body habitus
 - Pre-existing cardiopulmonary disease
- Patients may lose up to one motor root level within the first few days post injury

Acute Injury

- Indications for tracheostomies
 - All with C3 level or greater
 - C5 level complete or higher injury with respiratory failure
 - C6 level complete or lower injury with respiratory failure 79%
 - C8 level and lower injury generally do not require tracheostomies

Pathophysiology

- Impaired cough; once peak cough flows fall to less than 160L/m, insufficient force
- When intercostal and abdominal musculature is flaccid, paradoxical movements result in a significant drop in the efficiency of breathing
- atelectasis is the most common respiratory complication
- Decreased inflation of the alveoli also leads to significant reduction in the release of surfactant
- Hypersecretion of bronchial mucus, abnormal both in amount and chemical content (thicker)
- Due to autonomic changes bronchospasm is routinely seen
 - when ipratropium by inhalation is used in individuals with tetraplegia, the forced VC increased significantly from 41% to 50%
- Chest trauma including rib fractures, flail chest, pulmonary contusions or laceration, avulsion of a bronchus, rupture of the diaphragm/esophagus, pneumothorax, hemothorax, and hemoperricardium will impact function

Normal

SCI Cervical

Lung Volume Changes

- Ventilatory patterns alter significantly during the first year of injury
- Immediately following injury, flaccid paralysis of the intercostal and abdominal muscles resulting reduction of vital capacity to approximately 20-60% of predicted value in tetraplegia and 80-90% in paraplegia
- Truncal and intercostal tone increases with time, stabilizing the rib cage and returning vital capacity to approximately 60% of the pre-injury level
- Progressive reduction in functional residual capacity due to atelectasis and basal pulmonary fibrosis
- Residual volume remains elevated compared with normal population values
- Total lung capacity does not recover significantly

Techniques of Diaphragmatic Assessment

- Observation
- Sniff test
- Sonography
- EMG
- Phrenic nerve conduction
- Transdiaphragmatic pressure

Respiratory Complications

- Incidence of atelectasis and/or pneumonia during inpatient rehabilitation has been estimated between 9.1 and 14.8% for individuals entering the model SCI systems program since 1996
- Ventilator associated pneumonia increases by 1% to 3% per day of intubation
- Cotton et all found that respiratory complications occurred in 51% of patients with T1-6 SCI versus 34.5% of T7-12 SCI.
- Diagnosis of pneumonia in patients with SCI is complicated by baseline prevalence of retained secretions.
- Aspiration pneumonia, initially with chemical pneumonitis then subsequently bacterial infection
- Risk factors for aspiration include tracheostomy, anterior spinal surgery, and mechanical ventilation

Pharmacological agents

- Beta agonists facilitate bronchodilation and mucus clearance
- inhaled corticosteroids may be used in combination with Beta agonist
- Several agents may be nebulized to assist in clearance of secretions
 - isotonic saline
 - sodium bicarbonate
 - acetylcysteine
- Anticholinergic agents increase FEV1
- Methylxanthines may improve diaphragmatic contractility

Treatment

- Positional Change Turning every 2 hours
- Rotation beds
- Chest percussion and drainage
- Suctioning
 - Give O2 for hypoxemia
 - Give atropine for bradycardia
- Assisted cough
- Bronchoscopy and bronchial lavage

Treatment

- Aggressive pulmonary toilet and lung expansion
 - Intermittent positive pressure breathing (IPPB)
 - Intrapulmonary percussive ventilation (IPV)
 - EzPAP
 - Ambu bag
 - Mechanical insufflator/exsufflator
 - High TV mechanical ventilation

Assessment

- Signs of impending respiratory failure include tachypnea, progressive desaturation, and decrease in VC to less than 15 ml/kg
- Arterial oxygen tension (PaO2) is the most sensitive tool for evaluation of atelectasis.
- Arterial carbon dioxide (PaCO2) tension is used to evaluate ventilation abnormalities.
- VC is the best predictor of muscle fatigue
- If VC approaches 10ml/kg immediate support is indicated
- Indications for intubation include increasing oxygen requirements, increasing respiratory rate, rising PCO2, and diminishing breath sounds
- Tracheostomy should should not be prolonged beyond 1-2 weeks
- Cuff pressures should be monitored and maintained below 25 cm H20

Ventilator Settings

- Generally ventilation with TV of 15 to 20 mL/Kg are routinely used in spinal cord population
- ARDSNet trial outline a significant increase in mortality in patients treated with high TV
 - Excluded patients with neuromuscular disease
- If pneumonia leads to any evidence of significant intrinsic lung injury, revert back to low lung volume models 6mL/kg
- Increases in volumes are held when peak pressures exceed 35 mm H20 or when plateau pressures exceed 25 mm H20

Criteria for Weaning

- NLI serves as a gross determinant of the weaning prognosis
- 80% of patients with injuries C4 and below successfully weaned
- 50% weaned at C3 level
- 28% with C2 level of injuries
- 0% of patients with C1 injuries
- Patients who achieved maximal NIF of >40 ml H20 and VC greater than 17 ml/kg body weight able to successfully wean
- Healthy lungs prior to wean; afebrile, hemodynamically stable
- minimal to no supplemental oxygen
- ABG values within normal limits

Academy of Spinal Cord Injury Professionals, Inc." Mary Minds. One Vision.

Electrical Stimulation

- Diaphragmatic pacing vs Phrenic nerve stimulation
- PNS requires thoracotomy for place of electrodes; DP can be done by laparoscopic approach
- Alternative to mechanical ventilation 24 hours per day
- Eligibility criteria include
 - highly motivated improve function
 - supportive caregiver
 - medical stability
 - appropriate patient/caregiver expectations
- Implanted at least 12 months post injury
- Evaluated with NCS and fluroroscopy

Glossopharyngeal Breathing

- involves rapidly taking small gulps using tongue and pharyngeal muscles to project the air past the glottis into the longs; 6-9 gulps of 60-200ml each
- useful in patients sho do nota have diaphragmatic strength
- requires intact midbrain
- technique to increase the VC, which allows for:
 - assistance in cough
 - improvement in audibility of patients voice,
 - ventilator free time

Sleep Apnea

- Sleep disordered breathing reported 15% to 62%, more prevalent in tetraplegia vs paraplegia.
- not usually apparent until 2 weeks post injury
- OSA is the predominant form
- Risk factors for SDB include:
 - increased neck circumference
 - individuals with SCI spending more time supine while asleep
 - increase in waist circumference
 - use of sedating medication
 - unopposed parasympathetic activation
 - higher level of SCI
 - obesity with BMI <30 kg/m2

Summary

- Cervical and high thoracic spinal cord injury results in reduction of vital capacity and increased residual volume impacting efficiency of respiratory system
- Aggressive pulmonary toileting and volume expansion are key to minimizing complications
- Supportive measures should be initiate early to prevent serious respiratory failure
- Respiratory function may be augmented with electrical stimulation of phrenic nerve or diaphragm
- Respiratory complications are the leading cause of death in persons with spinal cord injury

References

- Baydur, Ahmet, et al. "Lung Mechanics in Individuals with Spinal Cord Injury: effects of injury level and posture." J Applied Physiology. 2001 Feb; 90(2): 405-411
- Berlowitz, David J, et al. "Respiratory Problems and Management in People with Spinal Cord Injury." Breathe. 2016 Dec 12(4); 328-340
- Brown, Robert, et al. "Respiratory Dysfunction and Management in Spinal Cord Injury." Respir Care. 2006 Aug; 51(8): 853-870
- Kirshblum, Steven and Campagnola, Denise, et al. *Spinal Cord Medicine* 2nd Edition. Lippincott Williams & Wilkins. 2011. Chapter 10 pg 155-169.
- Raab, Anja Maria, et al. "Systematic Review of Incidence Studies of Pneumonia in Persons with Spinal Cord Injury." J Clin Med. 2022 Jan; 11(1): 211

THANK YOU!

Christopher Boudakian, DO Medical Director Director of Spinal Cord Injury Program California Rehabilitation Institute

cboudakian@selectmedical.com

and